Stochastic asymptotical regularization for linear inverse problems
نویسندگان
چکیده
Abstract We introduce stochastic asymptotical regularization (SAR) methods for the uncertainty quantification of stable approximate solution ill-posed linear-operator equations, which are deterministic models numerous inverse problems in science and engineering. demonstrate that SAR can quantify error estimates problems. prove regularizing properties with regard to mean-square convergence. also show is an order-optimal method linear provided terminating time chosen according smoothness solution. This result proven both a priori posteriori stopping rules under general range-type source conditions. Furthermore, some converse results verified. Two iterative schemes developed numerical realization SAR, convergence analyses these two provided. A toy example real-world problem biosensor tomography studied accuracy advantages SAR: compared conventional approaches problems, provide quantity interest, turn be used reveal explicate hidden information about usually obscured by incomplete mathematical modeling ascendence complex-structured noise.
منابع مشابه
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in man...
متن کاملA Regularization Method for Time-fractional Linear Inverse Diffusion Problems
In this article, we consider an inverse problem for a time-fractional diffusion equation with a linear source in a one-dimensional semi-infinite domain. Such a problem is obtained from the classical diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative. We show that the problem is ill-posed, then apply a regularization method to solve it based on th...
متن کاملRegularization and Inverse Problems
An overview is given of Bayesian inversion and regularization procedures. In particular, the conceptual basis of the maximum entropy method (MEM) is discussed, and extensions to positive/negative and complex data are highlighted. Other deconvolution methods are also discussed within the Bayesian context, focusing mainly on the comparison of Wiener filtering, Massive Inference and the Pixon meth...
متن کاملConvexly constrained linear inverse problems: iterative least-squares and regularization
| In this paper, we consider robust inversion of linear operators with convex constraints. We present an iteration that converges to the minimum norm least squares solution; a stopping rule is shown to regularize the constrained inversion. A constrained Laplace inversion is computed to illustrate the proposed algorithm.
متن کاملRegularization of linear inverse problems with total generalized variation
The regularization properties of the total generalized variation (TGV) functional for the solution of linear inverse problems by means of Tikhonov regularization are studied. Considering the associated minimization problem for general symmetric tensor fields, the wellposedness is established in the space of symmetric tensor fields of bounded deformation, a generalization of the space of functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2022
ISSN: ['0266-5611', '1361-6420']
DOI: https://doi.org/10.1088/1361-6420/aca70f